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Abstract

An iterative optimisation routine for aircraft
structuresusing GeneticAlgorithms (GAs) and
Neural Networks (NNs) is presented. In this
setupthe NNs form a responsesurface,approx-
imating the key mechanicalpropertiesof sub-
structures.NNs areupdatedevery iteration.The
GA usestheseNNsin theoptimisationto quickly
determinethefeasibilityof differentvariants.All
foundoptimalsubstructuresarecheckedusinga
Finite Element(FE) calculation. When the FE
outputsdiffer toomuchfrom theNN approxima-
tionsthesolutionis addedto theNN trainingset,
thusimproving theNN'sperformance.

Main advantagesof theproposedstrategy are
�rstly the possibility to take into accountmany
topologically distinct designsand secondlythe
�e xibility to quickly evaluatethein�uenceof up-
datedloadsor differentdesignrestrictions(e.g.
materials,accessholes) on the optimum. The
bene�t of thefeedbackof inaccuratelyestimated
substructureproperties(accordingto theFEveri-
�cation) is theimprovementof accuracy andcon-
vergence.Also this principledrasticallyreduces
the number of datasets(i.e. FE calculations)
neededto train theNNs initially.

Two levels are implemented:a global level
containingthe structureasa whole, anda local
level to describethesubstructures(e.g. compos-
ite panelsthe structureis madeof) more accu-
rately. On theglobal level a coarsemeshcanbe
used,for it is only neededto derive the loading
of the panels. On the local level moredetail is
needed,for linearstaticbucklingandlocalstrains
mustbeanalysedaccurately.

On the local level all substructureoptimisa-
tions (including the time-consumingFE checks)
are mutually independentand can thereforebe
parallelised. This speedsup the processsignif-
icantly when using multiple computersto dis-
tributetheworkload.In oursetup7-27machines
wereused,enablingovernightoptimisationof a
largestructure.

Full scaleoptimisationson a majorsubstruc-
ture of a representative aircraft design under
static loadcaseshave beenperformedsuccess-
fully.

1 Intr oduction

The goal of this researchprojectis to developa
programwhichenablesovernightoptimisationof
an aircraft stucturein order to quickly estimate
the possibleweight savings due to new design
considerations.A combinationof GeneticAl-
gorithms(GAs) andNeuralNetworks(NNs) has
beenemployedto iteratively optimisetheaircraft
structureby optimisingthe(moreor lesssimilar)
panelsit consistsof. In this setuptheNNs serve
asa responsesurface,mappingthekey mechani-
cal propertiesof thepanels.They areusedin the
evaluationfunction of the GA to determinethe
feasibilityof differentsolutionsvery fast.

TheGAs arechosenfor their robustnessand
¯exibility . Becausethey do not needany gradi-
entinformation,GAsallow amixtureof continu-
ousanddiscreteparametersso different topolo-
gies and even different designprinciples(plate
or trusswork) canbe handled.The drawbackof
this algorithmis the high numberof evaluations
needed,which urgesfor a responsesurfacesuch
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asa NN to approximatetheoutputsof Finite El-
ement(FE) analysesin a fastandaccurateway.

WhenNNs with ®xedarchitectureandtrain-
ing setshad beentrained with a more or less
arbitrary set of FE solutions, the errors of the
NN estimatesappearedquite large. Therefore,
a setupwith feedbackof optima found by the
GA hasbeenimplemented,so accurateFE val-
uesareaddedto the NN's training setwhenthe
NN's accuracy is insuf®cient. This meansthat
less initial datasetscan be usedand the NN is
only trainedto a higher accuracy in the places
wheretheGA expectsanoptimum.Theiterative
characterof theroutineincreasesthebene®tof a
(locally) accurateresponsesurface,for the pan-
els to beevaluatedin successive iterationsdiffer
in loadingonly.

Theproposedsetupis morebroadlyusableto
handleproblemswhich have thefollowing prop-
erties:

• The structurecanbe divided into smaller,
approximatelyindependentcomponents.

• Parametricmodelsare available for both
thestructureandits components.

• Load paths (or componentloads) are to
someextent dependentof componentde-
signs.

• Optimisationconstraintsareappliedat the
componentlevel.

• Multiple topologiesmay be allowed for a
component.

The paperis organisedas follows. Sections2
and 3 provide somebackgrondinformation on
NeuralNetworksandGeneticAlgorithmsrespec-
tively. In section4 thestructuralmechanicsprob-
lem will be explained. The proposedstrategy is
pointedout in section5. Section6 dealswith the
full scaletestswhile testresultsarepresentedin
section7. Finally themainconclusionsaredrawn
in section8.

2 Neural Networks

A (feedforward) neuralnetwork can be seenas
a curve-®tting techniquebasedon an analogy
with the (human)brain. A setof known inputs
and outputs(the training set) is usedto set the
coef®cients in the NN. This process, called
training, is a form of non-linear least squares
®tting. A reasonto chooseNNs as a response
surface is the fact that they can map virtually
any function without any a priori knowledge
of the relationshipbetweeninputs and outputs.
When sigmoid functions are used as transfer
functions, the NN's ability to generalize(i.e.
accurately map function samplesoutside the
training dataset)from a small amountof inputs
is much larger than conventional techniques
like ®tting with polynomials or fourier-series.
Anotherdifferenceis that sigmoidfunctionsare
capableof handlingdiscontinuitiesin theoutput,
but it is suspectedthat the quality of the ®t is
betterwith `sleek' functions.

Most function mapping arti®cial NNs are of
the Feed-Forward (FF) type and have neurons
groupedin layers. Eachneuronhasa transfer
function (e.g. a sigmoid function) operatingon
the neuron's input. In FF-NNs only neurons
in successive layers are interconnected. This
results in the typical shapeshown in ®gure 1
with one input layer (receiving an input vector
x typically representingdesignvariables),one
outputlayer(producingoutputvectory which is
anapproximationof themechanicalresponseof
acomponent,theexactvalueof whicharetargets
vector t) and an arbitrary number of hidden
layers. As the lines in the ®gure point out, the
responseof a neurontransferfunction depends
on weightedinputs(by weightsmatricesw) and
a biasvalue(by biasmatrix b) which actsasan
offset to theneuron's input. TheNNs employed
have so-calledback-propagationtraining algo-
rithms, this meansthat the contribution of each
connectionweight is determinedby passinger-
rors in a backwardmannerthroughthenetwork.
The errorsarethenminimisedby employing an
iterativeschemesuchasLevenberg-Marquardt.
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Fig. 1 Typical shapeof an arti®cial neuralnet-
work

The topic of neurocomputing(i.e. the com-
puter simulation of neural networks) has been
extensively analysedin literature, the readeris
referredto [1] and[2] for morespeci®cinforma-
tion on the backgroundandoperationof Neural
Networks(NN) in engineeringapplications.

3 GeneticAlgorithms

Genetic algorithms are guided random search
techniquesthatworkanalogoustobiologicalevo-
lution. Much of the GA terminologyis derived
from thebiologicalcounterpart,e.g.therearein-
dividuals,populations,genesand®tnesses.An
individual representsan elementin the solution
space.Theindividual'sgenesdetermineits loca-
tion (i.e. specifyall parametervalues)andits ®t-
nessindicatesthe performanceof the individual
with respectto theobjective andtheconstraints.
Individualsaregroupedin populations.

Assuming that a recombinationof genetic
material from well performing individuals cre-
atesfavourableoffspring, a GA usesselection
and variation to reacha solution to an optimi-
sationproblem. Selectionis appliedby assign-
ing a higher probability to the geneticmaterial
of favourableindividualsof gettingpassedon to
thenext generation.Variationis accomplishedby
meansof crossoverandmutation,i.e. recombina-
tionof geneticmaterialfromselectedindividuals,
respectively randomchangesin genes.

The algorithm starts by creating an initial
population consistingof individuals with ran-

domly assignedgenes. The ®tness of each
individual is determinedusing an appropriate
evaluation function, which is a value depend-
ing on the objective (weight in this project)
and penalties(which are given dependingon
constraintviolation). Selection,crossover and
mutation are applied consecutively to generate
a new population (the next generation). This
processis repeateduntil convergenceis reached,
that is, until a certain solution dominatesthe
population.

A GA can handle more general classesof
functions than most traditional mathematical
programming search techniques. Whereas
the latter use characteristicsof the problem
(e.g. gradientsand continuity), GAs do not
requiresuchassumptions.They canhandlealso
non-differentiableand discontinuousfunctions.
Becauseof theuseof mutationandthe fact that
GAs operateon a populationinsteadof a single
startingpoint, GAs arelesslikely to getstuckin
a local optimum. However, increasedrandom-
nesscomeswith decreasedconvergencespeed,
thereforeGAs typically require more function
evaluationsthangradientbasedoptimisers.This
is thereasonfor usinga responsesurfacesuchas
NNs insteadof directFEcalculations.

A geneticalgorithm hasbeenproven to be
aneffective way of solvinga wide rangeof non-
differentiableproblems.Thereaderis referredto
[3] for anapplicationin compositestructures,and
[4] for a civil engineeringapplication. The GA
operatorsusedfor this paperarederived from a
MatlabimplementedGA by Houcket. al. [5].

4 Structural MechanicsProblem

Two mechanicsproblemshave to beanalysedin
theoptimisationprocess:

1. A global level structureanalysiswith rela-
tively coarsemeshes,usedto obtain load-
ingsfor components

2. A local level componentanalysiswith ®ner
meshes,usedto obtainthebuckling multi-
plier andthemaximumlocal strainlevel
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All analysesaredoneautomaticallyusingpara-
metricmodels,for wich linearstaticFE calcula-
tionsareperformed.

The assemblyof an aircraft's vertical tail
plane(VTP) structureconsistsof skin, rib and
sparpanels,asshown in ®gure2, is analysed.
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Fig. 2 VTP structureassemblyof rib, skin, and
sparpanels

A parameterisedpanelis shown in ®gure 3.
The panelsaremadeof compositematerialand
analysedusing layered shell elements. Typi-
cal designparametersare length, width, mate-
rial properties,topology, stiffener/holepositions,
stiffenerheightsandpanelthickness.Topologies
aredistinctin thenumberof transversestiffeners,
thenumberof longitudinalstiffeners,thenumber
of holesandtheir orderingon thepanel.Length
andwidth becomeheightandwidth respectively
in theglobalstructure.All panelsareconsidered
symmetric.

For sparpanelsthe optimisationparameters
are: topology, thickness,positionsof the holes
and/orstiffenersandstiffenerheight.For rib pan-
els the thicknessandnumberof transversestiff-
enersandtheir positionsareoptimised.For skin
panelsonly thicknessis optimised.
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Fig. 3 Parameterisedpanel

5 Optimisation Strategy

Every optimisation run starts with initialising
the geometryand the NNs. NNs can either
be reloadedfrom a previous optimisation(thus
maintainingpreviously acquiredknowledge)or
be initialised by training datafrom new FE cal-
culations.

As statedbefore,theoptimisationroutinecan
besplit in a local (componentoptimisation)level
anda global(panelloadingderivation)level.

5.1 Local level

Everypanelin thestructureis optimisedfor mini-
malstructuralweightusingthegeneticalgorithm
asdisplayedin ®gure4. TheNNsareusedin the
evaluation function for estimatingthe buckling
load and maximum local strain for eachpanel
proposedby the GA. Whenthe buckling load is
lowerthantheappliedload(derivedontheglobal
level), or whenthe local strainexceedsits max-
imum allowed value, the solution is penalised.
This way the panel's geometryis less likely to
persistin the population,so the algorithmtends
to panelsthatdonotviolatetheconstraints.Each
topology(see®gure5) is representedby oneNN,
sotheevaluationfunctionalwayshasa complete
setof NNs at its disposal.

On terminationof theGA loop thebestpanel
found is checked with a FE analysis,to make
sure the NN's estimateis accurate. If this is
not the case,the NN is retrainedwith the infor-
mation just obtainedfrom the FE check. The
NN aimsto achieve a certainerror level (a user
de®nedthreshold),if this value is not reached
within agivennumberof trainingcyclesthenum-
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ber of neuronsin the NN hidden layer is in-
creased.After all panelshave beencheckedand
theNNs have beenupdatedwith thefeedbackof
theFE analyses,theoptimisationis startedagain
with improvedNNs,or returnsto thegloballevel
structureanalysisif all foundoptimalpanelsap-
pearedaccuratelyestimatedby theNNs.
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Fig. 4 Componentlevel layout

5.2 Additional rules

To avoid repetitionof equalFEanalysesin subse-
quentfeedbackiterations,thefollowing rulesare
applied:

• Thetopologyof theoptimalpanelsolution
is excludedin the next feedbackiteration,
forcing theoptimiserto searchin different
regionsof thedesignspace.This improves
theaccuracy of thesetof NNs.

• Once a NN for a certain topology is re-
trained, all panels for which this topol-

ogy wasexcludedre-addit to their search
space.

• Onceafeasiblesolution(judgingfrom FE)
hasbeenfound, the next solutionmustbe
lighter. This way, the optimisercan ®nd
optima that are approximatedtoo conser-
vative by the NN. Example: Normally a
lighter panel which does not satisfy the
constraints(accordingto the NN approxi-
mationof its properties)getsapenalty, soit
is foundunfavourable.However, whenall
solutionswhicharenot lighter thantheop-
timum alsogeta penalty, the lighter panel
might still be found as optimum. When
this optimum is checked by a FE analy-
sis, it might appearfeasible(i.e. not vio-
lating any constraints)andbadly approxi-
matedby theNN.

5.3 Global level

No optimisationtakesplaceon the global struc-
tural level. On this level all components(panels)
areassembledandthenew loadingsof eachcom-
ponentarederived from the global model for a
numberof different loadcases.A representative
load is calculatedfor eachpanel. This loadwill
beaconstraintin thelocal level optimisation.

After all loadshave beenobtainedfrom the
structureanalysis,thecomponentsareoptimised
againusingtheiterativeprocedureof optimising,
checkingandretrainingtheNNs asdescribedin
§5.1.Thisprocessof loadderivationandoptimi-
sationgoesonaslongastheloadsobtainedfrom
theglobalstructurechangesigni®cantly.

5.4 Distrib uted computing implementation

Since all panel optimisationsare independent,
the local level process(§5.1)canbeparallelised
to a large extent usingmultiple computers,thus
speedingup the overall optimisation process.
This meansthat the GA paneloptimisation,but
moreimportantly, thetime-consumingFEchecks
of optima and NN (re)training cycles are dis-
tributedamongseveralcomputersin aLAN.
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6 Optimisations

Threeoptimisationruns are performedto show
somecharacteristicfeaturesandbehaviour. Re-
sultsareobtainedusingaJavaimplementationof
theproposeddistributedcomputingoptimisation
algorithmwrittenat theUniversityof Twente.

6.1 Optimisation setups

1. A (large)seriesof componentsonly (front
andrearsparpanels)using the additional
rules in §5.2. PATRAN/NASTRAN anal-
ysesareperformedon 7 HP-UX machines
@400MHz.

2. A VTP-like structurerun (as introduced
in §5.3) using simple skin optimisation
(thicknessonly) for 18 skin, 9 rib and18
sparpanels,which arefully optimised(pa-
rametersarestatedin §4). ANSYS analy-
sesareperformedon 20 MS windows ma-
chines@2.6GHz.

3. As 2. but for 36 skin, 18 rib and36 spar
panels,using 27 MS windows machines
@2.6GHz.

6.2 Optimisation constraints

Linearbuckling andlocal strainconstraintshave
to besatis®edfor all panels.Extraconstraintsfor
therespectivesetupsare:

1. In all sparpanelsexcept the 6 lower ones
(front andrear)accessholesarerequired.

2. Topologies9band19-21asshown in ®gure
5 arenot takeninto account.

3. In all sparpanelsexceptthe 4 upperones
(front and rear) accessholesare required
andno longitudinalstiffenersareallowed.
Topologies9band19-21asshown in ®gure
5 arenot takeninto account.

It must be mentioned that for the structure
optimisations(setup2 and3) non-realisticglobal
loadcasesandconstraintsareused,they are for

testingandillustrative purposesonly. The com-
ponentsonly run is an early actualoptimisation
run.

Loading:

• Sparpanels:combinedshearandbending

• Rib panels:shearonly

• Skin panels: combined compres-
sion/tensionandshear

• Structure:globaltorsionandbendingload-
cases

Topologiesusedfor sparpanelsaredepictedin
®gure5. Panelsarerotated90 degreescompared
to the global structure.For ribs topologieswith
transversestiffenersonly (no holesandno lon-
gitudinal stiffeners)aretaken into account. Rib
topologiesdiffer in no. of stiffenersonly.
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Fig. 5 Sparpanelcon®gurationsthatcanbechosen
in optimisation

New topologiescan easily be added. Also
topologiesusingtrusswork insteadof composite
panelscouldbeimplemented,howeverthis is be-
yondthescopeof thecurrentresearch.

7 Results

Someof theoptimisationresultsarehighlighted.
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7.1 Convergence

A componentsonly optimisation(setup1) with
applicationof the extra rulesmentionedin §5.2
typically convergesin 50-80feedbackiterations
(dependingontheproblemcomplexity) andtakes
about18hoursto completeon7 HP-UX worksta-
tions.

The structureoptimisations(setups2 and3)
needed2-3structureiterationsto converge,using
a ®xednumberof 35 component(NN feedback)
iterations.With anaverageFEsolvingtimeof ca.
1 minuteper panelthe optimisationscompleted
in 8-9hours.

Runtimesareindications.During theprocess
somemachineswere not available all the time.
Also thespeedis stronglydependentonthemesh
sizesused.Nevertheless,it is clearthatovernight
optimisationof a completestructureis possible,
however only whenenoughcomputersareavail-
able.

7.2 Optimised design

A pictureof theoptimisedsparsis shown in ®g-
ure 6. Keepin mind that all con®gurationsare
rotated90degreescomparedto theonesdepicted
in ®gure5. It is clearthatfor largerpanels,more
stiffenersarechosento prevent buckling. A re-
markablefactis theappearanceof holesin panels
wherethey werenotrequired,probablydueto the
weight thehole itself saves. Surroundinga hole
by stiffenersseemsby far the bestoption when
a hole is required. Thereforeaddition of new
topologieswith oneor moreholes,morethan2
transversalstiffenersand2 or morelongituninal
stiffenersmight beattractive for upperpanelsin
therearspar, accordingto this result.

In ®gure 7 the optimisedstructuredesigns
are depicted. As can be seenmore stiffeners
arechosenin thelower panels,for they typically
have a higherloading. Thein¯uenceof stiffener
placementcanbeclearlyseenin therearsparof
the®rst structure,which haslongitudinalstiffen-
ersplaceddivergentlytowardsthelowerend(to-
wardshigherbending).

The outcomesof multiple optimisationruns,
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Fig. 6 Optimiseddesigns(with realistic load-
cases)
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(a) Setup2 (b) Setup3

Fig. 7 Optimiseddesigns(loadcasesarenot re-
alistic)

sometimeswith slightly changedparamaters,are
very similar. Thoughnot proven scienti®cally,
the proposedmethodseemsquite robust. This
is not a surprise,consideringthe robustnessand
thoroughnessof theGA andthelearningandgen-
eralisationcapabilitiesof theNNs.

8 Conclusions

Fromseveralexperimentswith theproposedpro-
gram,someconclusionscanbedrawn:

• The proposedprogramcanbe a powerful
designtool as it allows overnightevalua-
tion of designdecisionssuchas:

– Useof differentmaterials

– Different hole placementconstraints
throughoutthestructure

– Useof differentvariables(i.e. ®xed
or variablestiffenerheights)

– Allowanceof differenttopologies.

• Theeffect of new or differentloadcaseson
the optimal designcan be quickly evalu-
ated,for knowledgeis storedin re-usable
NNs.

• Thefeedbackof theFEoutputsof prelimi-
naryoptimato theNN is essentialto reach
anaccurateoptimum

• The use of additional rules (see §5.2)
greatly improvesthe ef®ciency andeffec-
tivenessof theoptimisation.

• Therobustnessof theroutineis notproven,
thoughthe fact that optima canbe repro-
ducedwhithin narrow boundswith differ-
ent initial NN training setsandother GA
randomseedsindicatesconvergenceto a
globaloptimum.

• Integrated structureoptimisation is rela-
tively ef®cient, for later iterationsbene®t
of (locally) well trainedNNsfrom previous
iterations(dueto thefactthatonly loading
changes).

• NeuralNetwork training time canbecome
dominantfor NNswith largedatasets(typ-
ically favourable topologies with many
variables).

• Distributing time consuming operations
suchas FE calculationsand NN training
amongseveralcomputersis essentialfor a
practicalconcepttool.
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