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Abstract

An iteratve optimisation routine for aircraft
structuresusing GeneticAlgorithms (GAs) and
Neural Networks (NNs) is presented. In this
setupthe NNs form a responsesurface, approx-
imating the key mechanicalpropertiesof sub-
structuresNNs areupdatecevery iteration. The
GA usegheseNNs in theoptimisationto quickly
determinghefeasibility of differentvariants.All
found optimal substructuresrechecled usinga
Finite Element(FE) calculation. Whenthe FE
outputsdiffer too muchfrom the NN approxima-
tionsthesolutionis addedo the NN trainingset,
thusimproving the NN's performance.

Main advantage®f theproposedtrate)y are
rstly the possibility to take into accountmary
topologically distinct designsand secondlythe
e xibility to quickly evaluatethein uence of up-
datedloadsor differentdesignrestrictions(e.g.
materials,accessholes) on the optimum. The
bene t of the feedbackof inaccuratelyestimated
substructur@ropertiegaccordingto the FE veri-

cation) is theimprovemenif accuray andcon-
vergence.Also this principle drasticallyreduces
the number of datasets(i.e. FE calculations)
neededo trainthe NNs initially .

Two levels are implemented:a global level
containingthe structureas a whole, and a local
level to describethe substructurege.g. compos-
ite panelsthe structureis madeof) more accu-
rately On the globallevel a coarsemeshcanbe
used,for it is only neededo derive the loading
of the panels. On the local level more detail is
neededfor linearstaticbucklingandlocalstrains
mustbe analysedaccurately

On the local level all substructureoptimisa-
tions (including the time-consuming~E checks)
are mutually independentnd can thereforebe
parallelised. This speedaip the processsignif-
icantly when using multiple computersto dis-
tributetheworkload. In our setup7-27 machines
were used,enablingovernightoptimisationof a
largestructure.

Full scaleoptimisationson a majorsubstruc-
ture of a representatie aircraft design under
static loadcaseshave been performedsuccess-
fully.

1 Intr oduction

The goal of this researchprojectis to developa
programwhich enablesvernightoptimisationof
an aircraft stucturein orderto quickly estimate
the possibleweight sarzings due to new design
considerations. A combinationof GeneticAl-
gorithms(GAs) andNeuralNetworks (NNs) has
beenemployedto iteratively optimisetheaircraft
structureby optimisingthe (moreor lesssimilar)
panelsit consistof. In this setupthe NNs sene
asaresponseaurface,mappingthe key mechani-
cal propertiesof the panels.They areusedin the
evaluationfunction of the GA to determinethe
feasibility of differentsolutionsvery fast.

The GAs arechoserfor their robustnessand
“exibility. Becausehey do not needary gradi-
entinformation,GAs allow a mixture of continu-
ousanddiscreteparameterso differenttopolo-
gies and even different designprinciples (plate
or trusswork) canbe handled. The dravback of
this algorithmis the high numberof evaluations
neededwhich urgesfor aresponsesurfacesuch



asa NN to approximatehe outputsof Finite El-
ement(FE) analysesn afastandaccuratevay.

WhenNNs with ®xed architectureandtrain-
ing setshad beentrained with a more or less
arbitrary set of FE solutions, the errors of the
NN estimatesappearedjuite large. Therefore,
a setupwith feedbackof optima found by the
GA hasbeenimplementedso accurateFE val-
uesareaddedto the NN's training setwhenthe
NN's accuray is insuf®cient. This meansthat
lessinitial datasetxan be usedandthe NN is
only trainedto a higheraccurag in the places
wherethe GA expectsanoptimum. Theiteratve
characteof theroutineincreaseshe bene®tof a
(locally) accurateresponsesurface,for the pan-
elsto be evaluatedin successie iterationsdiffer
in loadingonly.

Theproposedetupis morebroadlyusableto
handleproblemswhich have the following prop-
erties:

e The structurecanbe divided into smaller
approximatelyndependentomponents.

e Parametricmodelsare available for both
the structureandits components.

e Load paths (or componentloads) are to
someextent dependentf componentde-
signs.

e Optimisationconstraintsare appliedat the
componentevel.

e Multiple topologiesmay be allowed for a
component.

The paperis organisedas follows. Sections2

and 3 provide somebackgrondinformation on

NeuralNetworksandGeneticAlgorithmsrespec-
tively. In sectiond thestructuraimechanicgrob-
lem will be explained. The proposedstratayy is

pointedoutin section5. Section6 dealswith the
full scaletestswhile testresultsare presentedn

section/. Finally themainconclusionsaredravn

in section8.
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2 Neural Networks

A (feedforward) neuralnetwork canbe seenas
a curve-®tting techniquebasedon an analogy
with the (human)brain. A setof known inputs
and outputs(the training set) is usedto setthe
coefdcients in the NN. This process, called
training, is a form of non-linearleast squares
®tting. A reasonto chooseNNs as a response
surfaceis the fact that they can map virtually
ary function without arny a priori knowledge
of the relationshipbetweeninputs and outputs.
When sigmoid functions are used as transfer
functions, the NN's ability to generalize(i.e.
accurately map function samplesoutside the
training dataset)rom a small amountof inputs
is much larger than corventional techniques
like ®tting with polynomials or fourier-series.
Anotherdifferenceis that sigmoidfunctionsare
capableof handlingdiscontinuitiesn the output,
but it is suspectedhat the quality of the ®t is
betterwith “sleek'functions.

Most function mapping arti®cial NNs are of
the Feed-lBrward (FF) type and have neurons
groupedin layers. Eachneuronhasa transfer
function (e.g. a sigmoidfunction) operatingon

the neurons input. In FF-NNs only neurons
in successie layers are interconnected. This

resultsin the typical shapeshovn in ®gure 1
with one input layer (receving an input vector
X typically representingdesignvariables),one

outputlayer (producingoutputvectory whichis

an approximationof the mechanicatesponsef

acomponentthe exactvalueof which aretamgets
vector t) and an arbitrary number of hidden
layers. As the linesin the ®gure point out, the
responseof a neurontransferfunction depends
on weightedinputs (by weightsmatricesw) and

a biasvalue (by biasmatrix b) which actsasan

offsetto the neurons input. The NNs employed

have so-calledback-propagatiortraining algo-

rithms, this meansthat the contribution of each
connectionweight is determinedby passinger-

rorsin a backward mannerthroughthe network.

The errorsarethen minimisedby emplgying an

iterative schemesuchasLevenbeg-Marquardt.
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Fig. 1 Typical shapeof an arti®cial neuralnet-
work

The topic of neurocomputing(i.e. the com-
puter simulation of neural networks) has been
extensiely analysedin literature, the readeris
referredto [1] and[2] for morespeci®cinforma-
tion on the backgroundand operationof Neural
Networks (NN) in engineeringapplications.

3 GeneticAlgorithms

Genetic algorithms are guided random search
techniqueshatwork analogouso biologicalevo-
lution. Much of the GA terminologyis derived
from thebiologicalcounterparte.g.therearein-
dividuals, populations,genesand ®tnesses.An
individual representsn elementin the solution
space.Theindividual's genesdetermindts loca-
tion (i.e. specifyall parametevalues)andits ®t-
nessindicatesthe performanceof the individual

with respecto the objectve andthe constraints.

Individualsaregroupedn populations.

Assuming that a recombinationof genetic
material from well performingindividuals cre-
atesfavourable offspring, a GA usesselection
and variation to reacha solutionto an optimi-
sationproblem. Selectionis appliedby assign-
ing a higher probability to the geneticmaterial
of favourableindividualsof gettingpassednto
thenext generationVariationis accomplishedby
meanf cross@erandmutation,i.e. recombina-
tion of genetiomaterialfrom selectedndividuals,
respectiely randomchangesn genes.

The algorithm starts by creating an initial
population consisting of individuals with ran-
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domly assignedgenes. The ®tness of each
individual is determinedusing an appropriate
evaluation function, which is a value depend-
ing on the objective (weight in this project)
and penalties(which are given dependingon
constraintviolation). Selection,crosseer and
mutation are applied consecutiely to generate
a newv population (the next generation). This
processs repeatedintil corvergencels reached,
that is, until a certain solution dominatesthe
population.

A GA can handle more general classes of
functions than most traditional mathematical
programming search techniques. Whereas
the latter use characteristicsof the problem
(e.g. gradientsand continuity), GAs do not
requiresuchassumptionsThey canhandlealso
non-differentiableand discontinuousfunctions.
Becauseof the useof mutationandthe factthat
GAs operateon a populationinsteadof a single
startingpoint, GAs arelesslik ely to getstuckin
a local optimum. However, increasedrandom-
nesscomeswith decreaseaorvergencespeed,
therefore GAs typically require more function
evaluationsthangradientbasedoptimisers.This
is thereasorfor usingaresponseurfacesuchas
NNs insteadof directFE calculations.

A geneticalgorithm hasbeenproven to be
an effective way of solving a wide rangeof non-
differentiableproblems.Thereaderis referredto
[3] for anapplicationn compositestructuresand
[4] for a civil engineeringapplication. The GA
operatorausedfor this paperarederved from a
MatlabimplementedSA by Houcket. al. [5].

4  Structural MechanicsProblem

Two mechanicgproblemshave to be analysedn
the optimisationprocess:

1. A globallevel structureanalysiswith rela-
tively coarsemeshesusedto obtainload-
ingsfor components

2. A locallevel componengnalysisvith ®ner
meshesusedto obtainthe buckling multi-
plier andthe maximumlocal strainlevel



All analysesare doneautomaticallyusing para-
metric models,for wich linear staticFE calcula-
tionsareperformed.

The assemblyof an aircraft's vertical tail
plane (VTP) structureconsistsof skin, rib and
sparpanelsasshovnin ®gure?2, is analysed.

Fig. 2 VTP structureassemblyof rib, skin, and
sparpanels

A parameteriseganelis shavn in ®gure 3.
The panelsare madeof compositematerialand
analysedusing layered shell elements. Typi-
cal designparametersare length, width, mate-
rial propertiestopology stiffener/holepositions,
stiffenerheightsandpanelthickness.Topologies
aredistinctin thenumberof trans\ersestiffeners,
thenumberof longitudinalstiffenersthenumber
of holesandtheir orderingon the panel. Length
andwidth becomeheightandwidth respectrely
in the globalstructure.All panelsareconsidered
symmetric.

For sparpanelsthe optimisationparameters
are: topology thickness,positionsof the holes
and/orstiffenersandstiffenerheight.For rib pan-
els the thicknessand numberof trans\ersestiff-
enersandtheir positionsare optimised.For skin
panelsonly thicknesds optimised.
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Fig. 3 Parameteriseganel

5 Optimisation Strategy

Every optimisation run starts with initialising
the geometryand the NNs. NNs can either
be reloadedfrom a previous optimisation(thus
maintainingpreviously acquiredknowledge) or
be initialised by training datafrom new FE cal-
culations.

As statedbefore theoptimisationroutinecan
besplitin alocal (componenbptimisation)level
anda global (panelloadingderivation)level.

5.1 Local level

Everypanelin thestructurds optimisedfor mini-
mal structuralweightusingthe geneticalgorithm
asdisplayedn ®gure4. TheNNs areusedin the
evaluationfunction for estimatingthe buckling
load and maximum local strain for eachpanel
proposedyy the GA. Whenthe buckling load is
lowerthantheappliedload(dervedontheglobal
level), or whenthe local strainexceedsts max-
imum allowed value, the solution is penalised.
This way the panels geometryis lesslikely to
persistin the population,so the algorithmtends
to panelghatdo notviolatethe constraintsEach
topology(see®gureb) is representetdy oneNN,
sothe evaluationfunctionalwayshasa complete
setof NNs atits disposal.

Onterminationof the GA loop the bestpanel
found is checled with a FE analysis,to make
sure the NN's estimateis accurate. If this is
not the case,the NN is retrainedwith the infor-
mation just obtainedfrom the FE check. The
NN aimsto achieve a certainerror level (a user
de®nedthreshold),if this value is not reached
within agivennumberof trainingcyclesthenum-



ber of neuronsin the NN hidden layer is in-
creasedAfter all panelshave beenchecled and
the NNs have beenupdatedwith the feedbackof
the FE analysesthe optimisationis startedagain
with improvedNNSs, or returnsto the globallevel
structureanalysisif all found optimal panelsap-
pearedaccuratelyestimatedy the NNs.
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Fig. 4 Componentevel layout

5.2 Additional rules

To avoid repetitionof equalFE analysesn subse-
quentfeedbackterationsthefollowing rulesare
applied:

e Thetopologyof the optimal panelsolution
Is excludedin the next feedbackiteration,
forcing the optimiserto searchn different
regionsof thedesignspace.Thisimproves
theaccurag of thesetof NNs.

e Oncea NN for a certaintopology is re-
trained, all panelsfor which this topol-

Multile vel Distrib uted Structur e Optimization

ogy wasexcludedre-addit to their search
space.

e Onceafeasiblesolution(judgingfrom FE)
hasbeenfound, the next solutionmustbe
lighter. This way, the optimisercan ®nd
optimathat are approximatedoo conser
vative by the NN. Example: Normally a
lighter panel which does not satisfy the
constraintgaccordingto the NN approxi-
mationof its propertiespetsapenalty soit
is found unfavourable. However, whenall
solutionswhich arenotlighter thanthe op-
timum alsogeta penalty the lighter panel
might still be found as optimum. When
this optimum is checled by a FE analy-
sis, it might appearfeasible(i.e. not vio-
lating arny constraintsyandbadly approxi-
matedby the NN.

5.3 Global level

No optimisationtakes placeon the global struc-
tural level. Onthislevel all componentgpanels)
areassembledndthenew loadingsof eachcom-
ponentare derived from the global modelfor a
numberof differentloadcasesA representade
loadis calculatedfor eachpanel. This load will
beaconstrainin thelocallevel optimisation.
After all loadshave beenobtainedfrom the
structureanalysisthe componentareoptimised
againusingtheiterative procedureof optimising,
checkingandretrainingthe NNs asdescribedn
85.1. This processf load derivationandoptimi-
sationgoeson aslong astheloadsobtainedrom
theglobalstructurechangesigni®cantly

5.4 Distrib uted computing implementation

Since all panel optimisationsare independent,
the local level procesg85.1) canbe parallelised
to a large extent usingmultiple computersthus
speedingup the overall optimisation process.
This meansthatthe GA paneloptimisation,but
moreimportantly thetime-consumind-E checks
of optima and NN (re)training cycles are dis-
tributedamongseveralcomputersn aLAN.



6 Optimisations

Threeoptimisationruns are performedto shawv
somecharacteristideaturesand behaiour. Re-
sultsareobtainedusinga Javaimplementatiorof
the proposedlistributedcomputingoptimisation
algorithmwritten atthe University of Twente.

6.1 Optimisation setups

1. A (large) seriesof component®nly (front
andrear sparpanels)using the additional
rulesin 85.2. PATRAN/NASTRAN anal-
ysesareperformedon 7 HP-UX machines
@400MHz.

2. A VTP-like structurerun (as introduced
in 85.3) using simple skin optimisation
(thicknessonly) for 18 skin, 9 rib and 18
sparpanelswhich arefully optimised(pa-
rametersarestatedin 84). ANSYS analy-
sesareperformedon 20 MS windows ma-
chines@2.6GHz.

3. As 2. but for 36 skin, 18 rib and 36 spar
panels,using 27 MS windows machines
@2.6GHz.

6.2 Optimisation constraints

Linearbuckling andlocal strainconstrainthave
to besatis®edor all panels.Extraconstraintgor
therespectre setupsare:

1. In all sparpanelsexceptthe 6 lower ones
(frontandrear)access$olesarerequired.

2. Topologie9band19-21asshovnin ®gure
5 arenottakeninto account.

3. In all sparpanelsexceptthe 4 upperones
(front and rear) accessholesare required
andno longitudinalstiffenersare allowed.
TopologieBYband19-21asshonvnin ®gure
5 arenottakeninto account.

It must be mentionedthat for the structure
optimisationgsetup2 and3) non-realistioglobal
loadcasesnd constraintsare used,they are for
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testingandillustrative purposesnly. The com-
ponentsonly run is an early actualoptimisation
run.

Loading:
e Sparpanels.combinedshearandbending

¢ Rib panels:shearonly

e Skin panels: combined compres-
sion/tensiorandshear

e Structure:globaltorsionandbendingload-
cases

Topologiesusedfor sparpanelsare depictedin
®gure5. Panelsarerotated90 degreescompared
to the global structure. For ribs topologieswith
trans\ersestiffenersonly (no holesand no lon-
gitudinal stiffeners)are taken into account. Rib
topologieddiffer in no. of stiffenersonly.

1 2 3 4
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13 14 15 16
9 19 2( 21
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Fig. 5 Sparpanelcon®gurationghatcanbe chosen
in optimisation

New topologiescan easily be added. Also
topologiesusingtrusswork insteadof composite
panelscouldbeimplementedhoweverthisis be-
yondthe scopeof the currentresearch.

7 Results

Someof the optimisationresultsarehighlighted.
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7.1 Convergence

A componentnly optimisation(setupl) with

applicationof the extra rulesmentionedin 85.2
typically corvergesin 50-80feedbackiterations
(dependingontheproblemcomplexity) andtakes
aboutl8hoursto completeon 7 HP-UX worksta-
tions.

The structureoptimisations(setups2 and 3)
needed-3 structurdterationsto corverge,using
a ®xed numberof 35 componen{NN feedback) —~—
iterations.With anaverageFE solvingtime of ca. ~—
1 minute per panelthe optimisationscompleted
in 8-9 hours.

Runtimesareindications.During the process
somemachineswere not available all the time. S
Also thespeeds stronglydependenvnthemesh
sizesused.Neverthelessit is clearthatovernight -
optimisationof a completestructureis possible,
however only whenenoughcomputersareavail- -
able.

.
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7.2 Optimised design

A pictureof the optimisedsparsis shovn in ®g- = ®
ure 6. Keepin mind thatall con®gurationsare
rotated90 degreescomparedo theonesdepicted =
in ®gureb. It is clearthatfor largerpanelsmore
stiffenersare chosento prevent buckling. A re- <
markablefactis theappearancef holesin panels
wherethey werenotrequiredprobablydueto the R ﬁ S
weightthe hole itself sares. Surroundinga hole

by stiffenersseemsby far the bestoption when T~ @ i
a hole is required. Thereforeaddition of new (a) Frontspar (b) Rearspar
topologieswith one or more holes,morethan 2
trans\ersalstiffenersand 2 or morelongituninal
stiffenersmight be attractve for upperpanelsin
therearspar accordingo this result.

In ®gure 7 the optimised structuredesigns
are depicted. As can be seenmore stiffeners
arechosenn thelower panelsfor they typically
have a higherloading. The in uenceof stiffener
placementanbe clearly seenin therearsparof
the®rst structurewhich haslongitudinalstiffen-
ersplaceddivergentlytowardsthe lower end(to-
wardshigherbending).

The outcomesf multiple optimisationruns,

Fig. 6 Optimiseddesigns(with realistic load-
cases)
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e Theeffectof new or differentloadcasesn
the optimal designcan be quickly evalu-
ated,for knowledgeis storedin re-usable
NNs.

¢ Thefeedbaclof the FE outputsof prelimi-
naryoptimato the NN is essentiato reach
anaccurateptimum

e The use of additional rules (see 85.2)
greatlyimprovesthe ef®ciengy and effec-
tivenesof the optimisation.

e Therobustnes®f theroutineis notproven,
thoughthe fact that optima can be repro-
ducedwhithin narrov boundswith differ-
entinitial NN training setsand other GA
randomseedsindicatescornvergenceto a
globaloptimum.

(a) Setup2 (b) Setup3
e Integrated structure optimisationis rela-
Fig. 7 Optimiseddesigng(loadcasesirenot re- tively ef®cient, for later iterationsbene®t
alistic) of (locally) well trainedNNsfrom previous
iterations(dueto thefactthatonly loading
sometimewwith slightly changecharamatersare changes).

very similar. Thoughnot proven scienti®cally
the proposedmethodseemsquite robust. This
Is not a surprise,consideringthe robustnessand
thoroughnessf theGA andthelearningandgen-
eralisationcapabilitiesof the NNs.

¢ NeuralNetwork training time canbecome
dominantfor NNswith large datasetstyp-
ically favourable topologies with mary
variables).

e Distributing time consuming operations
suchas FE calculationsand NN training
amongseveralcomputerss essentiafor a
practicalconceptool.

8 Conclusions

Fromseveralexperimentswith the proposedro-
gram,someconclusionsanbedravn:

e The proposedprogramcan be a powerful 9 Acknowledgement
designtool asit allows overnightevalua-

tion of designdecisionssuchas: Thecontributionsof JeroerHol andJelmewind

arehighly appreciated.
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